Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 44(7): 757-771, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226330

RESUMO

BACKGROUND: Mitogen-activated protein kinases (MPKs) play important role in response to environmental stress as crucial signal receptors or sensors. Our previous study indicated that salt stress acts as a positive factor to stimulate the production of pharmacodynamic metabolites in the medicinal plant Glycyrrhiza uralensis. Currently, little is known about the MPK gene family and their functions in the medicinal plant G. uralensis. OBJECTIVE: Identification, comprehensive bioinformatic analysis, expression profiling, and response pattern under salt stress of the G. uralensis GuMPK gene family. METHODS: Genome-wide investigation and expression profiling of the MPK gene family in G. uralensis, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, promoter cis-acting element, and expression pattern under salt stress in two different salt-tolerant Glycyrrhiza species were performed. RESULTS: A total of 20 G. uralensis GuMPK genes were identified and categorized into five groups, and had conserved gene structure and motif distribution. Expression profiling of GuMPK genes suggested their potentially diverse functions in plant growth and in response to phytohormones and environmental stress, particularly GuMPK1, 2, 5, and 10 as key components for G. uralensis in response to abiotic stress. Further expression analysis under NaCl treatment in two different salt-tolerant Glycyrrhiza species displayed the MPKs' different response patterns, emphasizing the role of MPK2, 5, 7, and 16 as potentially crucial genes for Glycyrrhiza to respond to salt stress. CONCLUSION: Our results provide a genome-wide identification and expression profiling of MPK gene family in G. uralensis, and establish the foundation for screening key responsive genes and understanding the potential function and regulatory mechanism of GuMPKs in salt responsiveness.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Plantas Medicinais , Glycyrrhiza/química , Glycyrrhiza/genética , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Filogenia , Extratos Vegetais
2.
Molecules ; 24(9)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086079

RESUMO

As calcium signal sensors, calcium-dependent protein kinases (CPKs) play vital roles in stimulating the production of secondary metabolites to participate in plant development and response to environmental stress. However, investigations of the Glycyrrhiza uralensis CPK family genes and their multiple functions are rarely reported. In this study, a total of 23 GuCPK genes in G. uralensis were identified, and their phylogenetic relationships, evolutionary characteristics, gene structure, motif distribution, and promoter cis-acting elements were analyzed. Ten GuCPKs showed root-specific preferential expressions, and GuCPKs indicated different expression patterns under treatments of CaCl2 and NaCl. In addition, under 2.5 mM of CaCl2 and 30 mM of NaCl treatments, the diverse, induced expression of GuCPKs and significant accumulations of glycyrrhizic acid and flavonoids suggested the possible important function of GuCPKs in regulating the production of glycyrrhizic acid and flavonoids. Our results provide a genome-wide characterization of CPK family genes in G. uralensis, and serve as a foundation for understanding the potential function and regulatory mechanism of GuCPKs in promoting the biosynthesis of glycyrrhizic acid and flavonoids under salt stress.


Assuntos
Flavonoides/metabolismo , Glycyrrhiza uralensis/efeitos dos fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrízico/metabolismo , Proteínas Quinases/metabolismo , Cloreto de Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycyrrhiza uralensis/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Estresse Salino , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...